Nanosafety researchers at the Harvard T.H. Chan School of Public Health have developed a new intervention to fight infectious disease by more effectively disinfecting the air around us, our food, our hands, and whatever else harbors the microbes that make us sick. The researchers, from the School’s Center for Nanotechnology and Nanotoxicology, were led by Associate Professor of Aerosol Physics Philip Demokritou, the center’s director, and first author Runze Huang, a postdoctoral fellow there. They used a nano-enabled platform developed at the center to create and deliver tiny, aerosolized water nonodroplets containing non-toxic, nature-inspired disinfectants wherever desired. Demokritou talked to the Gazette about the invention and its application on hand hygiene, which was described recently in the journal ACS Sustainable Chemistry and Engineering.
Q&A
Philip Demokritou
GAZETTE: Give us a quick overview of the problem you’re trying to solve.
DEMOKRITOU: If you go back to the ’60s and the invention of many antibiotics, we thought that the chapter on infectious diseases would be closed. Of course, 60 years later, we now know that’s not true. Infectious diseases are still emerging. Microorganisms are smarter than we thought and evolving new strains. It’s a constant battle. And when I talk about infectious diseases, I’m mainly talking about airborne and foodborne diseases: For example, flu and tuberculosis are airborne diseases, respiratory diseases, which cause millions of deaths a year. Foodborne diseases also kill 500,000 people annually and cost our economy billions of dollars.
GAZETTE: Diarrheal diseases are big killers of kids, too.
DEMOKRITOU: It’s a big problem, especially in developing countries with fragmented health care systems.
GAZETTE: What’s wrong with how we sanitize our hands?
DEMOKRITOU: We hear all the time that you have to wash your hands. It’s a primary measure to reduce infectious diseases. More recently, we’re also using antiseptics. Alcohol is OK, but we are also using other chemicals like triclosan and chlorhexadine. There’s research linking these chemicals to the increase in antimicrobial resistance, among other drawbacks. In addition, some people are sensitive to frequent washes and rubbing with chemicals. That’s where new approaches come into play. So, within the last four or five years, we’ve been trying to develop nanotechnology-based interventions to fight infectious diseases.