Skip to content

Rescue

Page 1 of 1

When the “body” of the robot is inflated, it arches; when the “legs” are inflated, the robot stands up. Sequential pressurization and depressurization of the legs allows the robot to walk to a barrier (a glass plate). Deflation of the body decreases the height of the robot, and a different sequence of actuation of the legs gives it a kind of undulatory motion, and allows it to wiggle under the barrier. Once on the other side, re-inflation of the body allows it to resume its walk.

Soft-bots

Harvard professor’s work challenges traditional image of robotics

Science|

Date