For Steven Wofsy, the satellite is worth sticking around for.
Wofsy, an atmospheric scientist who spent decades investigating climate change, could be enjoying retired life at age 76, but he still has an active lab. Admittedly most projects there are winding down, with one exception: MethaneSAT, which could prove to be something of a game changer.
“The reason I’m not retired is that this is obviously way too important — and way too much fun,” said Wofsy, Harvard’s Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science. “I’m not taking students in other areas, even though there are some things still going on. This is the focus, and it’s extremely challenging, but in a good way.”
More precise than other methane-sensing satellites that came before, MethaneSAT will allow scientists to track emissions to their sources and provide key data for reduction efforts. It’s important because it could buy the world critical time in the climate change battle. And, most hopefully, it appears particularly do-able in part because saving wasted methane provides a financial incentive for timely corporate cooperation in halting leaks.
MethaneSAT is scheduled to launch early next year, and Wofsy is its principal investigator. The project is the result of a unique collaboration led by the nonprofit Environmental Defense Fund and involves academic scientists, environmental activists, the private space industry, and philanthropic pockets deep enough to fund the design, construction, and launch of a satellite, which is traditionally the reserve of government and big business.
Wofsy and EDF chief scientist Steven Hamburg said the project was born partly out of frustration with years of government inaction on climate but also from a growing realization that curbing methane emissions can have important short-term effects on climate change. In fact, it has the potential to provide a decades-long bridge, slowing the near-term rate of warming and reducing the damage as the world transitions to the low-carbon energy sources that are a longer-term solution.
And perhaps the most important part: It appears actually do-able as it includes an incentive for timely corporate cooperation.
Methane is a potent greenhouse gas — 84 times as powerful as carbon dioxide on a 20-year time scale — but has been in CO2’s shadow for two reasons. Carbon dioxide is emitted in much greater quantities and hangs around until removed by natural processes that can take centuries to millennia. That means the effects of the gas emitted today pile on top of those released over the last century, and the emissions of decades to come will only make the pile higher. Without steps to remove it, CO2’s cumulative effect will drive warming upward inexorably and, on a human time frame, irreversibly.
While methane drives just about 30 percent of the warming occurring today, what’s gotten everyone’s attention is its lifetime in the atmosphere: decades rather than centuries. Ironically, that brief lifespan is part of the reason why it has been overlooked. The year 2100 emerged early on as a climate-change milepost, a common marker by which to gauge progress toward solving the problem. But when impacts are considered over a century, short-lived methane and its impacts come and go while effects from the buildup of carbon dioxide grow larger and larger.
“Methane is a short-lived climate pollutant,” Hamburg said. “If you look at a pulse of emissions of something that doesn’t last very long, at its impacts over 100 years, you’re going to have a lower number. But if you ask what’s its impact over 20 years, you’re going to have a much higher number.”
With stronger storms, hotter heat waves, longer droughts, and other climate-related impacts already growing apparent, Hamburg said there’s a growing appreciation that what’s important is not just how much the world warms, but also how fast. An abrupt heating over 20 or 30 years will have impacts very different from those of a long slow warmup over 70 or 80, even if they ultimately reach the same temperature. The rapid increase allows little time for either nature or human societies to adapt. And methane, with its potent warming power and short lifetime, has the potential to act as a toggle between the two futures, Hamburg said.
“If we don’t do anything for 50 years and then radically reduce our methane, the amount of warming in 2100 won’t be different, but the rate of warming will be much higher if you delay, which will have big impacts — and even feedbacks — on the climate,” Hamburg said.
A landmark study
Wofsy has been keeping an eye on methane for decades. He has used everything from airplanes to balloons to a tower among Harvard Forest trees to better understand how greenhouse gases are changing the atmosphere. He has driven methane-sensing equipment around Boston searching for leaks in the area’s aging natural gas infrastructure, mounted instruments on rooftops and flown them from balloons to measure gases in the atmosphere.