Wakanda, the mythical setting for Marvels’ superhero film “Black Panther,” is home to some not-so-mythical technology. An indestructible cape might not yet be possible, but Wakanda’s levitating high-speed trains could zoom into reality with the help of superconductors.
Now, a new discovery about electron behavior may represent a step toward that superpowered world.
Superconductors give electrons — and, therefore, electricity — resistance-free highways. They have the potential to create power lines that permit super-fast transmission without shedding energy, enhance imaging technologies like MRIs, and levitate more than trains. But most of today’s fledgling superconductors require extremely cold temperatures to work. And while some scientists hope to find an answer in the right combination of materials, the solution might be hidden in how electrons move, not only what they move through.
In a study published in PNAS, a team of scientists from Harvard and Tampere University in Finland describe for the first time an unexpected path electrons can take through 2D, highly structured materials: That path is called branched flow. Branched flow happens when any kind of wave — sound, light, or even ocean — moves across uneven surfaces that bump them into tree-like, chaotic branches. Before now, branched flow had never been observed in such rigid, 2D, solid structures. The discovery could help explain how quantum mechanics influence electron behavior, and also give scientists a way to control electron paths in order to create artificial superconductors with “superwires.”