To confront the many challenges that infectious diseases pose to mankind head-on, a multi-disciplinary team of bioengineers, materials-scientists and immunologists at Harvard’s Wyss Institute has developed a broadly deployable biomaterials-based infection vaccine technology called “OMNIVAX.”
OMNIVAX was inspired by a fundamentally new cancer vaccine approach created by David Mooney’s group in the immuno-materials platform that he leads at Harvard’s Wyss Institute for Biologically Inspired Engineering. Mooney is a Wyss core faculty member and the Robert P. Pinkas Family Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS).
The vaccine platform approach is rooted in the idea that antigens, when they are incorporated together with immune-activating adjuvants in a longer-lived biomaterial scaffold that concentrates immune cells at the site of vaccination, can be presented to the immune system in a more controlled and sustained way than when merely provided transiently in soluble form. As a result of this, the immune system’s protective responses can be more effective and prolonged.
Soon after COVID-19 started to spread across the globe, devastating a millions of lives and pushing the health systems and economies of many countries to their limits, Mooney’s team, which had previously focused on other infectious diseases, pivoted and used their OMNIVAX platform to generate vaccines against the SARS-CoV-2, the virus responsible for the pandemic.
It is widely accepted that a safe and effective vaccine that creates broad immunity against the coronavirus, and can be made quickly and distributed almost universally will be critical to address this pandemic. Experts estimate that it might take around 12 to 18 months to achieve this goal, which still would be record time for delivering a vaccine — and the race is on in many corners of the world.
The secrets of OMNIVAXination
Using OMNIVAX’s fast and effective vaccine strategy, the team created a collection of vaccines against the COVID-19-causing SARS-CoV-2 virus. Their approach is highly modular, based on the simple and rapid combination of a mesoporous silica material, an adjuvant, the dendritic cell-recruiting factor GM-CSF, and one or more antigen(s). Many different antigens and adjuvants can be combined in a plug-and-play fashion.
The researchers believe that OMNIVAX vaccines with their unique structure and mechanism could provide protection against a number of infectious diseases caused by uncontrollable viral and bacterial pathogens, including those that will be responsible for forthcoming epidemics. Researchers believe it may have great potential to become a vaccine technology of the future.