By the time computational geneticist Pardis Sabeti finishes breakfast these days, she knows her inbox will be stuffed with notes, questions, and responses, all of which will require her immediate attention.
There’s a thread on the diagnostic tests her lab at the Broad Institute of MIT and Harvard are developing for a range of diseases, now including COVID-19. Another scroll and there’s a back-and-forth she needs to weigh in on about the genetic sequence of the novel disease. There are also conversations on a project, eight years in the making, to help West and Central Africa detect disease threats as they emerge, a kind of pandemic early warning system that feels wildly prescient to the uninitiated.
Then the meetings start.
“I’m in meetings all day, every day from 7 a.m. till midnight, basically, and then working through the night,” said Sabeti, a professor in the Department of Organismic and Evolutionary Biology at the Faculty of Arts and Sciences. “It’s been a marathon.”
Since early January, work has meant 16- to 18-hour days, seven days a week for Sabeti, who uses algorithms to study genetics and is perhaps best known for her research on infectious diseases and her genome detective work sequencing the Ebola virus in 2014 during the outbreak in West Africa. Her already-urgent projects have intensified in the age of coronavirus, which has itself spawned new emergencies.
Right now she is working to set up and scale COVID-19 testing in the Boston area, helping hospitals in parts of Africa do the same, and sequencing viral samples from Massachusetts patients. The pandemic has revved up existing projects, like the African surveillance system and a new CRISPR diagnostic test her lab developed with MIT.
Underlying it all has been a single, consistent goal: help the world respond to the latest disease threat while preparing it to do better on the next one.
“Our goals are finding ways of detecting these microbes, connecting that information and sharing it in real time, and empowering every actor — from the researchers and the clinicians to the average citizen — so they can be best informed and best able to respond in the context of the outbreak,” said Sabeti, who is also a professor of immunology and infectious diseases at the Harvard T.H. Chan School of Public Health, an institute member at the Broad, and a Howard Hughes Investigator.
She’s been committed to this kind of work for a while. After studying biology at MIT, in 1996 Sabeti won a Rhodes Scholarship to study genetic resistance to infectious diseases at Oxford University, where she focused on malaria. Before she graduated Harvard Medical School in 2006, she had developed an algorithm and a tool that helped scientists mine the human genome for regions linked to infectious disease. In the process, she began studying Lassa fever, which causes a hemorrhagic illness similar to Ebola. When the Ebola epidemic began in West Africa in 2014, Sabeti was part of a team that diagnosed the first cases in Sierra Leone and sequenced the virus’s genetic makeup. The team discovered that the epidemic started with a single transmission from animal to human and from there spread person to person.