Science & Tech

Neutron star swaps lead to short gamma-ray bursts

2 min read

Gamma-ray bursts are the most powerful explosions in the universe, emitting huge amounts of high-energy radiation. For decades their origin was a mystery. Scientists now believe they understand the processes that produce gamma-ray bursts. However, a new study by Jonathan Grindlay of the Harvard- Smithsonian Center for Astrophysics (CfA) and his colleagues, Simon Portegies Zwart (Astronomical Institute, The Netherlands) and Stephen McMillan (Drexel University), suggests a previously overlooked source for some gamma-ray bursts: stellar encounters within globular clusters.

“As many as one-third of all short gamma-ray bursts that we observe may come from merging neutron stars in globular clusters,” said Grindlay.

Gamma-ray bursts (GRBs) come in two distinct “flavors.” Some last up to a minute, or even longer. Astronomers believe those long GRBs are generated when a massive star explodes in a hypernova. Other bursts last for only a fraction of a second. Astronomers theorize that short GRBs originate from the collision of two neutrons stars, or a neutron star and a black hole.

Most double neutron star systems result from the evolution of two massive stars already orbiting each other. The natural aging process will cause both to become neutron stars (if they start with a given mass), which then spiral together over millions or billions of years until they merge and release a gamma-ray burst.

Grindlay’s research points to another potential source of short GRBs – globular clusters. Globular clusters contain some of the oldest stars in the universe crammed into a tight space only a few light-years across. Such tight quarters provoke many close stellar encounters, some of which lead to star swaps. If a neutron star with a stellar companion (such as a white dwarf or main-sequence star) exchanges its partner with another neutron star, the resulting pair of neutron stars will eventually spiral together and collide explosively, creating a gamma-ray burst.

The paper announcing this finding was published in the Jan. 29, 2006 online issue of Nature Physics. It is available online at http: //www.nature.com/nphys/index.html and in preprint form at http://arxiv.org/abs/astro-ph/0512654.