Campus & Community

Key antibody IgG links cells’ capture and disposal of germs

2 min read

Scientists have found a new task managed by the antibody that’s the workhorse of the human immune system: Inside cells, immunoglobulin G (IgG) helps bring together the phagosomes that corral invading pathogens and the potent lysosomes that eventually kill off the germs.

The research, by Axel Nohturfft at Harvard University and colleagues at Harvard, Massachusetts General Hospital, and the Massachusetts Institute of Technology (MIT), appears this week in the Proceedings of the National Academy of Sciences (PNAS).

“The IgG class of antibodies is a critical part of the human immune system, guarding us against infection by an endless array of microorganisms,” says Nohturfft, associate professor of molecular and cellular biology in Harvard’s Faculty of Arts and Sciences. “Our findings add yet another immunological task to the list of those handled by IgG.”

While just one of several broad classes of human antibodies, IgG is by far the most important – so much so that patients incapable of making their own antibodies to fight off infections are routinely treated with IgG alone. Broadly speaking, the immunological powerhouse manages the processes by which cells isolate and then kill invading microbes, viruses, and other antigens.

In a process called phagocytosis, intruding germs are first swallowed up by amoebalike white blood cells and stored in membrane pouches called phagosomes. These compartments then fuse with lysosomes, toxic cellular reservoirs that kill and degrade the sequestered antigens by flooding the phagosomes with acid and destructive proteins.

IgG, Nohturfft and his colleagues report, plays a key role in this merger of phagosomes and lysosomes into the so-called phagolysosomes that finally do in most invading microbes. Specifically, the antibody prompts phagosomes and lysosomes to dock and bind to each other with actin filaments, the first step in the unification of the two vesicles.

Nohturfft’s co-authors on the PNAS paper are Vishal Trivedi, Shao Chong Zhang, Adam B. Castoreno, Walter Stockinger, and Eugenie C. Shieh of Harvard’s Department of Molecular and Cellular Biology; Jatin M. Vyas of MIT’s Whitehead Institute for Biomedical Research and Massachusetts General Hospital; and Eva M. Frickel of the Whitehead Institute for Biomedical Research. The research was funded by the National Institutes of Health.